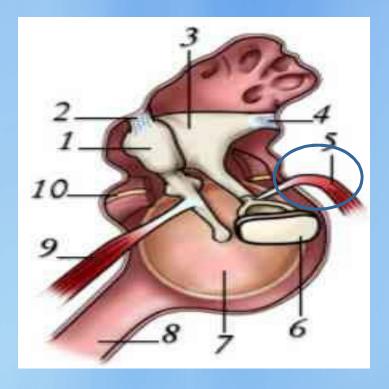
# Pros and Cons: Including High Frequency (1000 Hz) Ipsilateral Acoustic Stapedial Reflexes in UNHS

Samantha J. Kleindienst, M.S. Wendy D. Hanks, Ph.D.

**Gallaudet University** 

# Collaborators


- Carmen Brewer, Ph.D.
  - National Institutes of Health (Bethesda, MD)
- Ken Henry, Ph.D.
  - Inova Fairfax Hospital for Children (Falls Church, VA)
- Spencer Brudno, M.D.
  - Inova Fairfax Hospital for Children (Falls Church, VA)
- Carol LaSasso, Ph.D.
  - Gallaudet University (Washington, DC)

# **Overview**

- Acoustic Stapedial Reflexes
- Diagnostic Importance
- Previous Research
- Research Goals
- Methodology
- Results/Discussion
- Implications for UNHS
  - Pros
  - Cons

# **Acoustic Stapedial Reflexes**

- Acoustic Stapedial Reflexes:
  - Contractions of the stapedius muscle to loud stimuli
  - Nature's purpose: protection & perceptual theories





# **Diagnostic Importance**

- Differential diagnostic test
- Diagnosis of conductive pathology hearing loss
- Confirmation of nonorganic hearing loss
- Objective measure for:
  - central pathology
  - cochlear pathology
  - loudness recruitment
  - neuronal pathology

# **Previous Research**

- Indicated low frequency probe-tones are not valid in the neonatal population
- Confirmed that the presence of acoustic reflexes increased with increase in probe-tone frequency
- Hallmark Studies:
  - Weatherby & Bennett, 1980
  - McMillan, Bennett et al., 1985
  - Sprague et al., 1985
  - Swanepoel et al., 2007

## **Mature vs Neonatal Ears**

- Mature ears
  - 226 Hz probe-tone
    - Stiffness-driven system
- Neonate ears
  - Higher frequency probe-tone (i.e. 1000 Hz)
    - Mass-driven system
      - Smaller ECV
      - More compliant
    - Debris/mesenchyme

# **Research Goal**

- To establish normative data for 1000 Hz probe-tone ipsilateral acoustic stapedial reflexes for neonatal ears using elicitor tones 500, 1000, 2000 Hz and broadband noise (BBN)
  - Means
  - Standard Deviations
  - 90<sup>th</sup> percentile ranges



# Methodology

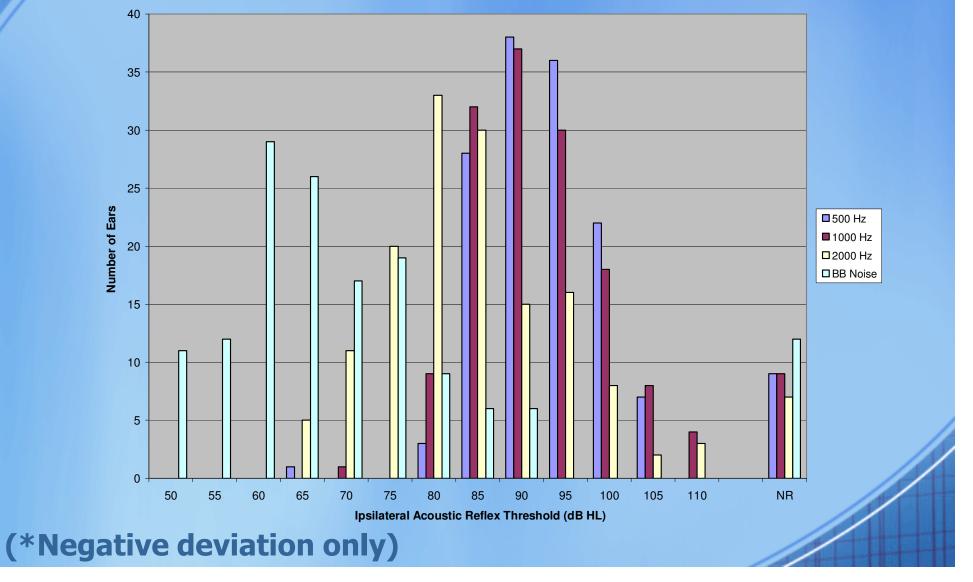
- Demographic Criteria
  - 12-60 hours old
  - 2500+ grams
  - 5-minute Apgar of 7+
  - State of arousal < 2 (Bench, 1976)</p>
- Inclusion Criteria
  - Pass of the TEOAE screening
  - Normal (peaked) 1000 Hz Tympanometry
- 138 neonates were included in initial study
  - 266 ears
- Acoustic reflexes obtained on 102 neonates
  - 175 ears



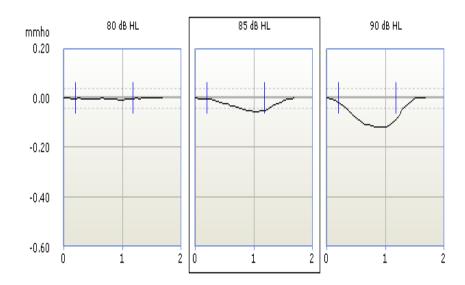
# Methodology

- 1000 Hz tympanometry
  - $\geq 0.39$  from the positive tail (Kei et al., 2003)
  - <u>> 0.6 mmho from the negative tail</u> (Margolis et al., 2003)
- 1000 Hz ipsilateral acoustic stapedial reflexes
  - Elicitor Stimuli:
    - 500 Hz; 1000 Hz; 2000 Hz; BBN
  - Minimal compliance change: 0.04 mmho
  - Randomized order of elicitor and ear
  - Started measurement at 50 dB HL; ascended in 10 dB steps; bracketing technique in 5 dB increments for threshold

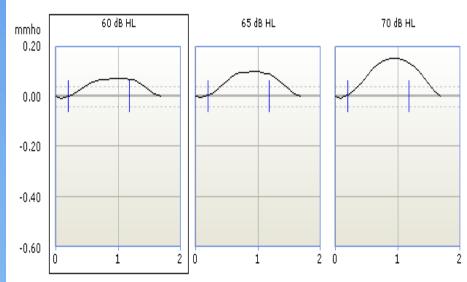
# **Results: Descriptive Statistics**


- 97% of the ears had present acoustic reflexes for at least one elicitor stimuli
  - Absent for 3% of the ears tested
- 87% of the ears had present reflexes for all elicitor stimuli
- 91-94% presence across elicitor stimuli
- Positive/Negative Deviations
  - Negative= 145 ears (83%)
  - Positive=14 ears (8%)
  - Both= 10 ears (6%)

#### **Results: Acoustic Reflex Thresholds\***


|                             | Elicitor Stimulus |         |         |       |
|-----------------------------|-------------------|---------|---------|-------|
|                             | 500 Hz            | 1000 Hz | 2000 Hz | BBN   |
| Ν                           | 139               | 142     | 147     | 138   |
| Mean (dB HL)                | 92.46             | 91.40   | 83.90   | 66.97 |
| SD                          | 5.96              | 7.04    | 9.40    | 10.37 |
| Min                         | 80                | 80      | 65      | 50    |
| Мах                         | 105               | 110     | 110     | 90    |
| 5 <sup>th</sup> Percentile  | 85                | 80      | 65      | 50    |
| 50 <sup>th</sup> Percentile | 90                | 90      | 80      | 65    |
| 95 <sup>th</sup> percentile | 100               | 105     | 100     | 85    |

(\*Negative deviation only)


#### **Distribution of AR Thresholds Across Elicitor Stimuli\***



# **Positive/Negative Deviations**



Deflection, Ipsi 1000 Hz



Deflection, Ipsi 2000 Hz

# **Results Summary**

- Tonal Elicitors: mean thresholds 80-90 dB HL
- BBN Elicitor: mean threshold 65 dB HL
- Compared to 226 Hz probe-tone norms\*:
  - 13.5 dB & 9.5 dB higher mean thresholds
  - 2.3 dB lower for 2000 Hz
- Other studies
  - Similar to Swanepoel et al. (2007)
  - Some differences with Mazlan et al. (2008)
- Positive/negative deviations

# **Results Summary**

- Time of testing
  - 12-18 hours old higher TEOAE refer rate & flat tymps
    - Especially for Cesarean Section
  - Tympanometry:
    - 12-18 hours old: 35% passed
    - 19-24 hours old: 65% passed
    - 25-60 hours old: 90% passed
- Suggests immittance testing after 24 hours for more effective test results

#### Conclusions

- Based on the high prevalence of high frequency ipsilateral 1000 Hz acoustic reflexes in neonates 12-60 hours old, clinical use is recommended
- Careful interpretation of immittance results is needed for neonates less than 24 hours old
- The use of automated acoustic reflex measurements is not recommended at this time due to unknown significance of reflexes in the positive direction

# **Acoustic Reflexes in UNHS**

- Pros
  - Specific and time-sensitive diagnoses
    - Auditory Neuropathy
    - OAE-based programs
  - Reduced parent anxiety
    - Informed parent counseling
  - Decreased percentage of false-positives
    - Misses for auditory neuropathy
  - Improved follow-up process





# **Acoustic Reflexes in UNHS**

- Cons
  - Personnel resources
    - Time
  - Tester Error
    - Expertise/Training
  - Expense



# **Future Clinical Needs**

- Assess clinical effectiveness of implementation
  - Trial by error
- Further Research:
  - positive vs. negative deviations
    - Screening protocols
  - high frequency acoustic reflexes in NICU and premature neonates
  - Obtain normative data on contralateral high frequency acoustic reflexes



# **Take Home Message**

- Ipsilateral high frequency acoustic stapedial reflexes in neonates at least 12 hours old
  - Reliable & accurate
  - Auditory Neuropathy: | miss/late ID
  - Improved parent counseling
  - Effective management



#### References

- Abahazi, D. A. & Greenberg, H. J. (1977). Clinical acoustic reflex threshold measurements in infants. *Journal of Speech, and Hearing Disorders, 42*(4), 514-519.
- Bench, J., Collyer, Y., Mentz, L., & Wilson, I. (1976). Studies in infant behavioral audiometry. *Audiology*, *15*, 85-105.
- Bennett, M. J. (1975). Acoustic impedance bridge measurements with the neonate. *British Journal of Audiology, 9,* 117-124.
- Bennett, M. J. & Weatherby, L. A. (1982). Newborn acoustic reflexes to noise and pure-tone signals. *Journal of Speech and Hearing Research, 25,* 383-387.
- Berlin, C. I. et al. (2005). Absent or elevated middle ear muscle reflexes in the presence of normal otoacoustic emissions: A universal finding in 136 cases of auditory neuropathy/dsy-synchrony. *Journal of American Academy of Audiology, 16*, 546-553.
- Himelfarb, M., Shanon, E., Popelka, G., and Margolis, R. (1978). Acoustic reflex evaluation in neonates. In S. Gerber, & G. Mencher, (Eds.), *Early diagnosis of hearing loss* (pp. 109-127). New York: Grune & Stratton.
- Mazlan, R., Kei, J., Hickson, L., Stapleton, C., Grant, S., Lim, S. et al. (2007). High frequency immittance findings: newborn versus six-week-old infants. *International Journal of Audiology, 46,* 711-717.

#### References

- Paradise, J. L., Smith, C. G., & Bluestone, C. D., (1976). Tympanometric detection of middle ear effusion in infants and young children. *Pediatrics*, *58*(2), 198-210.
- Sprague, B. H., Wiley, T. L. & Goldstein, R. (1985). Tympanometric and acoustic-reflex studies in neonates. *Journal of Speech and Hearing Research, 28,* 265-272.
- Swanepeol, D. W., Werner, S., Hugo, R., Louw, B., Owen, R., & Swanepoel, A. (2007). High frequency immittance for neonates: a normative study. *Acta Oto-Laryngologica*, *127*, 49-56.
- Terkildsen K. & Nielson, S. S. (1960). An Electroacoustic impedance measuring bridge for clinical use. *Archives of Otolaryngology*, *72*, 339-346.
- Weatherby, L. A., & Bennett, M. J. (1980). The neonatal acoustic reflex. *Scandinavian Audiology*, *9*, 103-110.
- Wiley, T. L., Oviatt, D. L. (1987). Acoustic-immittance measures in normal ears. *Journal of Speech and Hearing Research, 30,* 161-170.
- Wiley, T. L. & Fowler, C. G. (1997). *Acoustic immittance measures in clinical audiology: A primer*. San Diego, CA: Singular Publishing Group, Inc.

# Thank you!!

# Questions or comments



